Search results for "Pinch technique"

showing 2 items of 2 documents

Gluon mass generation in the massless bound-state formalism

2013

We present a detailed, all-order study of gluon mass generation within the massless bound-state formalism, which constitutes the general framework for the systematic implementation of the Schwinger mechanism in non-Abelian gauge theories. The main ingredient of this formalism is the dynamical formation of bound states with vanishing mass, which give rise to effective vertices containing massless poles; these latter vertices, in turn, trigger the Schwinger mechanism, and allow for the gauge-invariant generation of an effective gluon mass. This particular approach has the conceptual advantage of relating the gluon mass directly to quantities that are intrinsic to the bound-state formation its…

Nuclear and High Energy PhysicsRenormalizationBethe–Salpeter equationHigh Energy Physics::LatticeBackground field methodFOS: Physical sciencesPinch techniqueRenormalizationTheoretical physicsHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeGauge symmetriesQuantum mechanicsGauge theory3-gluon vertexPhysicsBackground field methodDynamical symmetry breakingGlueballsPhysicsHigh Energy Physics - Lattice (hep-lat)Mass generationInvarianceHigh Energy Physics::PhenomenologyPropagatorQCDGluonMassless particleHigh Energy Physics - PhenomenologyFísica nuclear
researchProduct

Analyzing dynamical gluon mass generation

2007

We study the necessary conditions for obtaining infrared finite solutions from the Schwinger-Dyson equation governing the dynamics of the gluon propagator. The equation in question is set up in the Feynman gauge of the background field method, thus capturing a number of desirable features. Most notably, and in contradistinction to the standard formulation, the gluon self-energy is transverse order-by-order in the dressed loop expansion, and separately for gluonic and ghost contributions. Various subtle field-theoretic issues, such as renormalization group invariance and regularization of quadratic divergences, are briefly addressed. The infrared and ultraviolet properties of the obtained so…

PhysicsBackground field methodHigh Energy Physics::LatticeMass generationHigh Energy Physics::PhenomenologyBackground field methodFOS: Physical sciencesPinch techniqueGeneral Physics and AstronomyPropagatorFísicaRenormalization groupHigh Energy Physics - Phenomenologysymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)Gluon propagatorSchwinger-Dyson equationsGluon field strength tensorRegularization (physics)Quantum electrodynamicssymbolsFeynman diagramGluon fieldRunning couplingMathematical physics
researchProduct